

NEW SYNTHESIS OF 2-METHYL-3(4-VINYLYLHYDROXY-PHENYL)-2,3-DIHYDRO-4H-1,3-BENZOXAZIN-4-ONE

G. G. Skvortsova, Z. V. Stepanova,
and L. V. Andriyankova

UDC 547.867.2.07

We found that the heating of salicylic p-hydroxyanilide (I) with acetylene under pressure at 190–200°C for 1 h in the presence of cadmium acetate in a medium of an organic solvent results in the formation of 2-methyl-3-(4-vinylylhydroxyphenyl)-2,3-dihydro-4H-1,3-benzoxazin-4-one (II):

The yield was 43%, and the compound was recovered in the form of white needles with mp 102°C (from hexane). IR spectrum: 3070, 1642, 970, 945 cm⁻¹. There was no absorption in the 3380–3160-cm⁻¹ region. PMR spectrum (in CCl₄): 4.40, 4.72, 6.60 (respectively, H_a, H_b, H_x of vinyl group, J_{ab} = 1.6, J_{ax} = 6.6, J_{bx} = 14 Hz); 5.70 (2-H); 1.47 (2-CH₃, J_{H,CH₃} = 6.2 Hz); 7.91 ppm (5-H, J₅₆ = 7.8, J₅₇ = 1.8 Hz).

When compound II was hydrogenated over a nickel catalyst, 2-methyl-3-(4-ethoxyphenyl)-2,3-dihydro-4H,1,3-benzoxazin-4-one (III) was obtained with a 90% yield and mp 136°C. The IR spectrum showed no absorption of a vinyl group. The individuality of compounds II and III was confirmed by TLC on aluminum oxide (hexane–ether). The data from the elemental analysis for C, H, and N fit the calculated data.

Irkutsk Institute of Organic Chemistry, Academy of Sciences of the USSR, Siberian Branch, Irkutsk 664033. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1278–1279, September, 1979. Original article submitted March 1, 1979.